Calcium Signal Transduction in the Calmodulin/Kv7.1 Channel Complex

SY04-04

 $\mathbf{E.\ Nu\~nez}^{\mathrm{I}}, \mathrm{G.\ Bernardo-Seisdedos}^{\mathrm{II}}, \mathrm{O.\ Millet}^{\mathrm{III}}, \mathrm{A.\ Villarroel}^{\mathrm{IV}}$

^IInstituto Biofisika, Bilbao, Spain, ^{II}CIC-Biogune, Bilbao, Spain, ^{III}CIC Biogune, Bilbao, Spain, ^{IV}Instituto Biofisika (UPV/EHU, CSIC), Leioa, Spain

The cardiac I_{KS} channel (KCNQ1/KCNE1) is a major repolarization current in the heart adequating diastolic filling time in the face of accompanying accelerated heart rate, while the M-current (KCNQ2/KCNQ3) is a key controller of neuronal excitability. Both are under dynamic control by the phospholipase C cascade, which causes reduction on PIP₂ levels and release of Ca^{2+} from IP₃ sensitive intracellular stores. While the action of PIP₂ in gating is thought to be direct on the channel, Ca^{2+} regulation is thought to be mediated by calmodulin (CaM), which binds to an intracellular site of the channel known as helix A + helix B. The current hypothesis regarding Ca^{2+} gating posits that CaM wraps around helix B under resting conditions, and, when CaM becomes loaded with Ca^{2+} , it embraces both A+B helices simultaneously, causing a large structural rearrangement. We have examined this issue by monitoring conformational changes triggered by Ca^{2+} using FRET. KCNQ1 is well positioned to integrate changes in intracellular Ca^{2+} into an alteration in action potential duration, consistent with our results, showing that Ca^{2+} responsive of considerable FRET change. In contrast, Ca^{2+} cause minimal FRET changes in KCNQ2 channels when are loaded with Ca^{2+} , according with our NMR results suggest that the AB module behaves as a rigid body around which CaM accommodates, both loaded with and without Ca^{2+} . Our investigation is focused on determining the regions responsible of Ca^{2+} signal transduction in KCNQ1 and KCNQ2 channels. For this, we have constructed different chimeras between KCNQ1 and KCNQ2 and we are analyzing FRET changes in response to Ca^{2+} . In combination with NMR studies, we expect to obtain a full description trajectory changes at atomistic level which led to gating of potassium channels by Ca^{2+} .