High-resolution studies of protein-lipid interactions using fluorinated lipids and biomolecular 19F NMR SY02-04 T. Diercks^I, A. De Biasio^I, A. Ibáñez de Opakua^I, M. Villate^I, M.J. Bostock^{II}, D. Nietlispach^{II}, J. Torres^{III}, F. Blanco^I ^IStructural Biology Unit, CiC bioGUNE, Derio, Spain, ^{II}Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom, ^{III}School of Biological Sciences, Nanyang Technical University, Singapore High resolution NMR studies on the structure, dynamics and molecular interactions of lipids are notoriously hampered by poor spectral ¹H dispersion. *Uniform isotopic labeling with* ¹³C would allow to enhance resolution by ¹H, ¹³C correlation spectroscopy, but their ¹³C spectra still show incomplete dispersion and signal splitting from ¹J_{CC} coupling. Also, ¹³C would be no unique marker for lipids in interaction studies with ¹³C labeled proteins. Thus we propose *sparse chemical labeling with fluorine* (100% ¹⁹F) in the lipid chain to greatly enhance spectral resolution indirectly, via fluorine induced deshielding of nearby ¹H, and directly, via editing in a ¹⁹F dimension with surpassing spectral dispersion, simplicity, and intensity. Both deshielding and J_{H,F} coupling reach up to 4 bonds, suggesting an optimal *sparse* fluorination scheme to minimise the biophysical impact of this chemical modification, suppress signal splitting from ¹J_{FF} coupling, and preserve a high ¹H density for intermolecular ¹H(lipid), ¹H(protein) NOE contacts. As a first example for this novel class of membrane mimics we obtained di-(4-fluoro)heptanoylphosphocholine, 4F-DHPC7, that forms stable micelles of similar size as DHPC7. Both 4F-DHPC7 and DHPC7 micelles solubilize and stabilise two representative membrane proteins: (i) photosensory rhodopsin II with 7 transmembrane helices, and (ii) outer membrane protein X with a β-barrel fold. Differences in the ¹H, ¹⁵N NMR fingerprint spectra recorded in 4F-DHPC7 and DHPC7 are small, confirming similar protein structures, and correlate with residues near the fluorine position in modelled micelles, suggesting a new method to gauge protein immersion depth. A first ¹⁹F filtered NOESY experiment indeed revealed unambiguous NOE contacts between 4-F-DHPC7 and a bihelical integrin fragment. Tests on more fluorinated lipids and membrane proteins with optimised biomolecular ¹⁹F NMR experiments are now required to further develop the promising approach.