Acute Oxygen Sensing: Molecular Mechanisms and Medical Impact PL-04 ## J. Lopez-Barneo^I ^IInstitute of Biomedicine of Seville (IBiS), University Hospital "Virgen del Rocío"/CSIC/University of Seville, Sevilla, Spain Oxygen (O_2) is necessary for oxidative phosphorylation, the major source of energy for the cells. Adaptive responses, which can be acute or chronic, have evolved to minimize the detrimental effects of O_2 -deficiency (hypoxia). Unraveling the mechanisms underlying O_2 sensing by cells is among the major advances in modern biomedical research. During sustained (chronic) hypoxia, transcription factors are activated to induce (in hours or days) the expression of " O_2 -sensitive" genes, which decrease the cellular needs of O_2 and increase O_2 supply to the cells. In mammals, hypoxia also triggers fast (in seconds) life-saving cardiorespiratory reflexes (hyperventilation and sympathetic activation) to increase gas exchange in the lungs and delivery of O_2 to critical organs, such as the brain and heart. These acute responses to hypoxia are mediated by cells of the "homeostatic acute O_2 sensing system", which contain O_2 -regulated ion channels. The main arterial chemoreceptors are glomus cells in the carotid body, which express K^+ channels that are inhibited by hypoxia. This leads to depolarization, Ca^{2+} influx and the release of transmitters that activate nerve fibers impinging upon the respiratory center. The mechanism whereby glomus cells "sense" changes in O_2 tension to signal membrane K^+ channels has remained elusive. We have shown that genetic disruption of the quinone binding site in mitochondria complex I selective abolishes acute O_2 sensing, and proposed a model in which accumulation of reduced quinone during hypoxia increases mitochondrial NADH and reactive O_2 species to signal membrane O_2 sensing, and proposed a model in which accumulation of reduced quinone during hypoxia increases mitochondrial NADH and reactive O_2 species to signal membrane O_2 sensing, and subunits of mitochondrial electron transport. Knowledge of the molecular mechanisms of acute O_2 sensing helps design more efficient therapies for severe and highly prevalent diseases in the human pop